
IEICE TRANS. FUNDAMENTALS, VOL.E82–A, NO.9 SEPTEMBER 1999
1987

LETTER

A Hierarchical Circuit Clustering Algorithm with Stable

Performance

Seung-June KYOUNG†, Kwang-Su SEONG††, In-Cheol PARK†,
and Chong-Min KYUNG†∗, Nonmembers

SUMMARY Clustering is almost essential in improving the
performance of iterative partitioning algorithms. In this paper,
we present a clustering algorithm based on the following observa-
tion: if a group of cells is assigned to the same partition in numer-
ous local optimum solutions, it is desirable to merge the group
into a cluster. The proposed algorithm finds such a group of cells
from randomly generated local optimum solutions and merges it
into a cluster. We implemented a multilevel bipartitioning algo-
rithm (MBP) based on the proposed clustering algorithm. For
MCNC benchmark netlists, MBP improves the total average cut
size by 9% and the total best cut size by 3–4%, compared with
the previous state-of-the-art partitioners.
key words: VLSI, CAD, partitioning, clustering

1. Introduction

In netlist partitioning which is widely used for such
applications as circuit placement, floor-planning and
rapid prototyping, the given netlist is partitioned into
k sub-netlists such that they have minimum connection
among them and satisfy the given size constraint.

When k is 2, the partitioning is called bipartition-
ing. Generally, the multi-way partitioning is achieved
by recursively applying the bipartitioning until each
sub-netlist meets the desired size constraint. Thus,
the bipartitioning plays an important role in the netlist
partitioning. Since finding the optimal solution for the
netlist partitioning problem is NP-complete [12], many
heuristic algorithms have been proposed. Kernighan
and Lin proposed a good heuristic algorithm (KL) for
graph bisection in 1970. The KL algorithm iteratively
swaps a pair of cells to reduce cut size and has time
complexity of O(n2 logn) [3]. Based on the KL algo-
rithm, Fiduccia and Mattheyses proposed a linear time
heuristic algorithm (FM) which, instead of swapping a
pair of cells, moves a cell at a time into the other parti-
tion. With ever-growing complexity of the problem, the
FM algorithm is more attractive due to its linear time
complexity. However, the solution obtained with the
FM algorithm tends to be trapped in a local minimum
because of the nature of the improvement technique,

Manuscript received April 27, 1998.
†The authors are with Department of Electrical Engi-

neering, Korea Advanced Institute of Science and Technol-
ogy 373-1 Kusong-dong, Yusong-gu, Taejon 305–701 Korea.

††The author is with Electrical Engineering Department,
YeungNam University 214-1 Daedong, Kyongsan, Kyong-
buk 712-749 Korea.

and is heavily affected by initial solutions. In addi-
tion, as the problem size increases, solution space to
be explored increases exponentially while search space
increases linearly. Therefore, the chance to find a good
local minimum significantly decreases. To overcome
this weak point, many clustering algorithms were pro-
posed [7]–[10][14].

The netlist of a VLSI circuit can be divided into a
number of tightly coupled sub-netlists. Based on this
fact, clustering algorithms try to merge such a sub-
netlist into a cell (cluster) and construct the contracted
netlist. In the previous literatures, it is known that it-
erative partitioning algorithms produce nearly optimal
solutions for small-sized problems. In addition, Gold-
berg and Burstein [13] show that FM-style algorithms
give good results when average cell degree is greater
than 5, where the cell degree means the number of nets
connected to the cell. Therefore, for large-sized prob-
lems, the performance of a FM-style partitioning algo-
rithm can be improved by using clustering methods,
since clustering helps reduce the solution space and in-
creases the cell degree.

Previous clustering algorithms can be classified
into two categories according to the method used to
find clusters: local clustering approach and global clus-
tering approach. Local approach mainly considers the
local connectivity of a netlist to form clusters. Bui [14]
applied a maximal random matching algorithm to build
clusters. Cong and Smith [8] formed clusters by collaps-
ing cliques. And Shin and Kim [7] selected a pair of cells
(or clusters) which maximizes the closeness function
and merged them.

On the other hand, global approach tries to use the
global information of a netlist. For example, to cap-
ture the global information, Garbers [10] constructed
clusters by finding and merging two cells which are
connected by more than k edge-disjoint paths whose
length is less than l. This approach is promising in
finding the natural clusters but has the time complex-
ity of O(d2l−1n), where d is the maximum cell degree.
Hagen and Kahng [9] proposed a global clustering al-
gorithm which uses cycles in random walk to construct
clusters. And many algorithms based on the eigenvec-
tors of a graph were also proposed [1][2][11].

Although the local approaches have low time com-
plexity, resulting clusters tend to be unnatural because

1988
IEICE TRANS. FUNDAMENTALS, VOL.E82–A, NO.9 SEPTEMBER 1999

Fig. 1 3 local optimum solutions.

they are generated by using only the local connectivity
information, thus limiting the performance. On the
other hand, the global approaches are more able to
find natural clusters. However, as the problem size in-
creases, the time complexity of global approaches makes
it difficult to be used for large-sized problems.

In this paper, we present a clustering algorithm
which utilizes the property of local optimum solution
space. The proposed clustering algorithm is grounded
on the following observation: if a group of cells is as-
signed to the same partition in numerous local optimum
solutions, it is desirable to merge the group into a clus-
ter. Starting with K local optimum solutions selected
randomly from the local optimum solution space, the
proposed clustering algorithm finds cells that are al-
ways assigned to the same partition throughout the K
local optimum solutions and merges them into a cluster.

For the case of bipartitioning, let us assume that
3 local optimum solutions (s1, s2 and s3) are randomly
selected as shown in Fig. 1. There are two cell groups,
N1 and N2. Since every cell in N1 is always assigned to
the same partition, the proposed clustering algorithm
merges every cell in N1 into a cluster. This is also true
for cells in N2.

To evaluate the performance of the proposed clus-
tering method, we implemented a multilevel bipar-
titioning algorithm (MBP) and tested it for MCNC
benchmark netlists. Compared with the state-of-the-
art partitioners, MBP yields 9% improvement in the
total average cut size and 3–4% improvement in the
total best cut size for the MCNC benchmark netlists.

The rest of this paper is organized as follows. In
Sect. 2, we describe the proposed clustering algorithm
in detail. Section 3 analyzes the time complexity of the
proposed clustering algorithm, and in Sect. 4, we show
the experimental results for MCNC benchmark netlists.

2. The Proposed Algorithm

2.1 Motivations

In the netlist partitioning problem, the size of the local
optimum solution space is generally very small com-

pared to that of the random solution space which con-
sists of all solutions satisfying the given size constraint.
In addition, there exists a group of cells which move
together in a number of local optimum solutions. Since
local optimum solutions are resulted from the process of
reducing cut size, such cell group tends to be composed
of tightly connected cells. This means that for reducing
cut size, the cells of such a group should be assigned
to the same partition fairly independent of initial solu-
tions. Therefore, the cell group thus obtained, contains
some global connectivity information of a netlist and
merging it into a clusters is considered to be effective
in reducing the solution space. We will now describe
how to find the cell groups having the property men-
tioned above.

A netlist can be modeled by a hypergraph H =
(V, E) where V is the set of cells and E is the set of
nets. Assuming bipartitioning, let S(H) be the set of
all local optimum solutions for a given size constraints,
and Ni be a subset of cells in V . And SK(H) denotes a
set of K solutions randomly sampled from S(H). Then,
if we randomly sample a local optimum solution from
S(H), the probability that every cell ∈ Ni is assigned
to the same partition becomes

p(Ni) =
|SNi(H)|
|S(H)| (0 ≤ p(Ni) ≤ 1)

where SNi(H) is the set of all local optimum solutions in
which every cell ∈ Ni is assigned to the same partition.

From the SK(H), we make a set of cell groups,
NK(H) = {N1, N2, .., Nm}, which satisfy the following
constraints,

1 Every cell in each Ni is assigned to the same
partition in every solution ∈ SK(H)

2 Ni ∩ Nj = ∅, for all i, j (i
= j)
3 |Ni| ≥ 2, for 1 ≤ i ≤ m

Constraint 1 is self-explanatory, and constraint 2
means that no cell can be assigned to more than one
Ni. Constraint 3 is added, since one cell is always as-
signed to the same partition. In Fig. 1 where the 3
local optimum solutions are shown, NK(H) becomes
{{1, 2, 3}, {10, 11}}. Then, we calculate the average of
p(Ni) for all Ni ∈ NK(H), denoted p(NK(H)), as fol-
lows,

p(NK(H)) =
1
m

m∑

i=1

p(Ni)

p(NK(H)) implies that if it is close to 1, every
cell in each Ni ∈ NK(H) has a tendency to be as-
signed to the same partition in most local optimum so-
lutions. Therefore, it is desirable to find NK(H) whose
p(NK(H)) is close to 1 and merge the cells in each Ni

∈ NK(H) into a cluster.
The heart of the proposed clustering algorithm is

LETTER
1989

to find NK(H) whose p(NK(H)) is close to 1 using
local optimum solutions. There are two aspects to be
considered: the first is how to generate local optimum
solutions and the second is how to determine K, mean-
ing that how many local optimum solutions should be
generated to find NK(H) whose p(NK(H)) is close to
1.

Although any iterative bipartitioning algorithm
can be used for the local optimum solution generation,
the previous bipartitioners tend to generate solutions
that are similar to one another. This property is not
useful for us as we want to randomly sample local op-
timum solutions. Generally a greedy iterative biparti-
tioner is much more dependent on initial solutions than
those which have hill-climbing capability. This prop-
erty of the greedy iterative bipartitioner is useful for
our purpose because starting from random initial solu-
tions, we can generate local optimum solutions that are
far different from each other. Thus, we used the greedy
iterative bipartitioner for generating local optimum so-
lutions.

To determine K, we need to analyze the character-
istics of a netlist. However, as the analysis is quite com-
plicated to be applied for real circuits, we chose K based
on the following observation. Given K local optimum
solutions (SK(H)), we determine NK(H). Although,
we can not compute the exact value of p(Ni), we can
estimate p(NK(H)) by randomly generating many lo-
cal optimum solutions and then counting the solutions
in which every cell in Ni ∈ NK(H) is assigned to the
same partition, i.e.,

p̂(NK(H)) = 1
m (|ŜN1(H)|+..+|ŜNm(H)|

|Ŝ(H)|)

≈ p(NK(H)) (when |Ŝ(H)|→ ∞)

where Ŝ(H) means the set of local optimum solu-
tions actually generated as a substitute for S(H), and
ŜNi(H) (⊆ Ŝ(H)) is the set of local optimum solutions
where every cells in Ni is assigned to the same partition.
For example, Fig. 2 shows p̂(NK(H)) according to dif-
ferent K values for a benchmark named “industry2P”.
The horizontal axis in logarithmic scale represents the
number of local optimum solutions generated, and the
vertical axis denotes p̂(NK(H)). It is observed in Fig. 2
that for a sufficient number of local optimum solutions
generated, p̂(NK(H)) converges to a certain value, and
that when K is larger than 20, the resulting value of
p̂(NK(H)) is close to 1.

2.2 Algorithm description

In this section, we describe the proposed clustering al-
gorithm as shown in Fig. 3. We assume that K is given
here. The Greedy Partition(H, K, SC) procedure of
step 1 generates K local optimum solutions, SK(H),

Fig. 2 p̂(NK(H)) for different K values on “industry2P”
benchmark.

Procedure Clustering(H,K)
Input: H = (V,E) : Input netlist.

K ≡ The number of local optimum solutions.
Constant: NCELLS ≡ Number of cells in H.
Variable: j ≡ Local optimum solution index.

t ≡ Cell index.
l ≡ Cluster index.
SK(H) ≡ {s1, .., sK}

≡ Local optimum solution set.
cellt[1, 2..K] ≡ Block assignment array.
BT ≡ Binary tree.

Output: C = {C0, . . . , Cl−1} = clusters of H.

1 SK(H) = Greedy Partition(H,K, SC);
2 for(j = 1; j ≤ K; j = j + 1)f

for(t = 1; t ≤ NCELLS; t = t+ 1)
cellt[j] = block index of cellt in sj ;

}
BT = ∅;

3 for(t = 1; t ≤ NCELLS; t = t+ 1)f
Traverse BT using cellt[1..K];
if(the path of cellt[1..K] does not exist)

Expand BT to contain this path;
Append cellt to the cell list of the leaf node;

}
l = 0;

4 foreach(all leaf nodes of BT){
Cl = cells in this leaf node;
l=l+1;

}
5 return C = {C0, C1, . . . , Cl−1};

Fig. 3 The proposed clustering algorithm.

where H is the input netlist and SC is the size con-
straint. The Greedy Partition(H, K, SC) procedure is
a greedy bipartitioner whose algorithm is similar to the
FM algorithm except that the hill-climbing capability
is dropped out.

Step 2 makes a block assignment list for each cell
of H . The block assignment list of a cell is the index list
of partition to which the cell is assigned for all solutions
in SK(H). Step 3 constructs a binary tree, BT, which

1990
IEICE TRANS. FUNDAMENTALS, VOL.E82–A, NO.9 SEPTEMBER 1999

Fig. 4 Binary tree construction.

Procedure MBP
Input: H0 = (V0, E0) ≡ Input netlist.
Variable: L ≡ Number of level.

Ci ≡ Intermediate clustering.
Pi ≡ Intermediate bipartitioning.

Constant:T ≡ Minimum cell number.
ITER ≡ Iteration number.

Output: P0 = {X0, Y0} ≡ Final bipartitioning.
i = 0, |V−1| = ∞;

1 While ((|Vi| ≥ T) and (|Vi| < |Vi−1|))f
Ci = Clustering(Hi,K);
Hi+1(Vi+1, Ei+1) =Make Netlist(Hi, Ci);
i = i+ 1;

}
L = i;

2 PL = FM(HL, ITER,NULL);
for(i = L− 1; i ≥ 0; i = i− 1)f
Pi =Mapping(Ci, Pi+1)
Pi = FM(Hi, 1, Pi)

}
3 return P0

Fig. 5 Multilevel bipartitioning algorithm(MBP).

contains all paths of block assignment lists. Cells with
the same block assignment list are linked to the cell list
of the corresponding leaf node. An example is shown
in Fig. 4 which shows the resulting BT and cell lists of
leaf nodes for the given block assignment lists. In step
4, we merge all cells linked to a leaf node into a cluster
(Cl). Thus, the cluster formed in step 4 consists of cells
that are always assigned to the same partition in every
solution ∈ SK(H).

The proposed multilevel bipartitioner (MBP) is
described in Fig. 5. Step 1 forms the coarsening
phase. We hierarchically simplify the given netlist
until the number of cells in Hi becomes less than
the given cluster number (T) or Hi is not simpli-
fied. Clustering(Hi, K) is the proposed clustering
procedure, and Make Netlist(Hi, Ci) is the procedure
which constructs the simplified netlist Hi+1 from Hi

and Ci (clustering results of Hi). Step 2 is the un-
coarsening phase. We first construct a bipartition-

ing result for HL (the most simplified netlist). The
FM(Hi, ITER, INIT) procedure is the standard FM
bipartitioner, where ITER means the number of it-
erations and INIT is an initial solution. PL is the
best solution among the results of ITER runs of FM .
Mapping(Ci, Pi+1) procedure takes a bipartitioning re-
sult Pi+1 of Hi+1 and a clustering result Ci of Hi, and
then constructs the initial solution for Hi to further
improve Pi. This process is repeated until the biparti-
tioning result of the original netlist is obtained.

3. Time Complexity

In this section, we analyze the time complexity of the
proposed clustering algorithm. The time complexity of
step 1-2 in Fig. 3, is O(Kn), where K is the number of
local optimum solutions to be generated and n is the
number of cells in the netlist. The traverse and expand
operation in step 3, can be completed by searching a
cell’s block assignment list. Therefore, if we account for
all cells, the time complexity of step 3 is O(Kn). As
K is constant, the proposed clustering algorithm has
linear time complexity.

4. Results

Figures 6 and 7 show p̂(NK(H)) for “p2” and “golem3”
benchmarks, respectively. In Figs. 6 and 7, the horizon-
tal axis in logarithmic scale represents the number of
local optimum solutions generated and the vertical axis
denotes p̂(NK(H)). Characteristics of benchmarks are
shown in Table 1. As shown in the figures, p̂(NK(H))
increases sharply when K is less than 20, and the value
of p̂(NK(H)) becomes close to 1 when K is greater
than 20. Therefore, we can say that every cell in each
Ni ∈ NK(H), that is found from more than 20 random
local optimum solutions, moves together in almost all
local optimum solutions. Thus, we can regard NK(H)
determined from more than 20 local optimum solutions
randomly generated as sufficiently good for our pur-
pose.

Figure 8 shows how the average cut size obtained
from MBP varies according to different values of K for
five benchmark circuits. The benchmarks cover huge
circuits as well as small circuits. Results are obtained
by bipartitioning each benchmark circuit, where the cut
size means the number of crossing nets between two
partitions. We performed this experiment with T =
400 and ITER = 50. The horizontal axis represents K
and the vertical axis denotes the ratio of the cut size,
i.e., (average cut size from 10 runs)/(average cut size
from 10 runs for K = 2). As we can expect, the quality
of clusters is too low for small K values to yield good
partitioning results. As shown in Fig. 8, MBP produces
good results for whole test circuits when K is greater
than 20.

From the above experimental results, we know that

LETTER
1991

Fig. 6 p̂(NK(H)) for different K values on “p2” benchmark.

Fig. 7 p̂(NK(H)) for different K values on “golem3” bench-
mark.

as p̂(NK(H)) becomes close to 1, MBP tends to pro-
duce good results. These experimental results coincide
with our observation that: if a cell group is assigned to
the same partition in numerous of local optimum so-
lutions, it is desirable to merge the cell group into a
cluster.

The proposed MBP algorithm was implemented in
C language and run on a SPARC20 machine. We ran
MBP with K = 24, T = 400 and ITER = 50. Ta-
ble 2 shows bipartitioning results for MCNC benchmark
netlists with the 45-55% size balance constraint. We as-
sume that the size of each cell is uniform. In Table 2,
the first column shows the name of each benchmark
netlist. The column labeled “cut size” represents the
number of crossing nets between two partitions.

MLc [4] and hMeTiS [6] are the state-of-the-art
multilevel partitioners whose results are quoted from
[4] and [6]. The column labeled MBP(10) reports the

Table 1 Charateristics of benchmark circuits.

bench (cells (nets (pins
balu 801 735 2697
bm1 882 903 2910
p1 833 902 2908
t4 1515 1658 5975
t3 1607 1618 5807
t2 1663 1720 6134
t6 1752 1541 6638

struct 1952 1920 5471
t5 2595 2750 10076
19ks 2844 3282 10547
p2 3014 3029 11219

s9234 5866 5844 14065
biomed 6514 5742 21040
s13207 8772 8651 20606
s15850 10470 10383 24712
ind2 12637 13419 48404
ind3 15406 21923 65791
s35932 18148 17828 48145
s38584 20995 20717 55203

avq small 21918 22124 76231
s38417 23849 23843 57613
avq large 25178 25384 82751
golem3 103048 144949 338419

Fig. 8 Average cut size trend for different K values.

best and average cut size obtained from 10 runs of our
algorithm, and hMeTiS(20) reports the best cut size
from 20 runs of hMeTiS. The column labeled FM(100)
shows the best and average cut size of FM from 100
runs, and the column labeled MLc shows the best cut
size of MLc from 10 runs and average cut size from 100
runs. For the best cut size, MBP is 40% better than
FM, 3% better than MLc and 4% better than hMeTiS.
In addition, MBP is 61% better than FM and 9% better
than MLc in terms of the total average cut size. The
total average cut size of MBP is only 3% worse than
the total best cut size. This implies that the proposed
clustering method is quite effective for capturing the
global connectivity information of a netlist.

1992
IEICE TRANS. FUNDAMENTALS, VOL.E82–A, NO.9 SEPTEMBER 1999

Table 2 Bipartitioning results for MCNC benchmark netlists. Each block satisfies
45-55% size constraint. NA means ‘Not Available from ref [4]’.

bench cut size standard deviation(σ)
FM(100) hMeTiS(20) MLc MBP(10) FM MBP

Min Avg Min Min Avg Min Avg
balu 27 36 27 27 NA 27 27 9.63 0.00
bm1 48 74 51 51 NA 47 48 16.44 2.76
p1 48 74 50 52 NA 47 49 9.51 2.51
t4 87 135 51 49 NA 53 54 29.93 0.63
t3 59 105 58 58 NA 58 59 30.06 1.12
t2 111 167 88 92 NA 86 88 20.04 1.54
t6 63 88 60 60 NA 60 64 7.11 2.59

struct 42 55 33 33 NA 33 33 5.12 0.64
t5 106 175 71 72 NA 72 72 31.50 1.27
19ks 123 172 106 108 NA 104 108 17.94 2.46
p2 141 267 145 145 NA 142 146 27.39 4.78

s9234 49 87 40 41 45 40 41 28.03 1.60
biomed 83 127 83 84 91 83 83 54.07 0.49
s13207 80 123 55 55 71 53 57 19.70 4.61
s15850 120 176 42 56 56 42 47 30.82 7.34
ind2 305 631 167 174 196 162 172 70.14 10.38
ind3 248 514 254 243 276 241 272 177.34 30.15
s35932 52 181 42 42 45 42 45 49.56 3.16
s38584 54 225 47 48 52 47 47 110.53 0.80

avq small 342 601 130 134 159 128 140 121.47 5.97
s38417 182 366 51 50 72 49 52 77.99 5.50
avq large 320 731 127 131 163 127 139 149.05 5.92
golem3 2468 3269 1445 1374 1462 1338 1349 222.79 9.43
total 5158 8379 3223 3179 3081 3192

sub-total 2688 2444
%imprv over 40.2% 61.9% 4.4% 3.0% 9.0% - -

The last two columns of Table 2 show the standard
deviation in 10 runs for FM and MBP. As known in the
previous literatures, FM yields unstable results, while
MBP produces very stable results. The average stan-
dard deviation of MBP for the 23 benchmarks is only
4.59 nets. This implies that we can obtain fairly good
bipartitioning results from a single run of MBP.

Table 3 shows the CPU time of the FM algorithm,
MLc and MBP. The CPU time in seconds is the total
required time for 1 run of each algorithm on a SPARC20
machine. Since the CPU time presented in the litera-
tures is not directly comparable to ours because of the
difference of underlying computer systems, we imple-
mented the FM algorithm and MLc as specified in [5]
and [4], respectively, to obtain relative CPU time. In
the experiment of MLc, we used the same parameter
specified in [4]. The most time-consuming procedure
of MBP is the Greedy Partition() which computes K
local optimum solutions. In order to shorten the re-
quired CPU time of MBP, it is desirable to parallelize
the procedure. The column labeled “1 run” of MBP
reports the CPU time in the case that the procedure
Greedy Partition() is not parallelized. And the col-
umn labeled “1 run (6M)” shows the CPU time of MBP
when the procedure Greedy Partition() is parallelized
for 6 machines. For the former case, MBP is about 5
times slower than MLc, while for the latter case, MBP
is about 1.5 times slower than MLc.

Table 3 The total required time of each algorithm for 1 run.

bench CPU time (seconds)
FM MLc MBP
1 run 1 run 1 run 1 run(6M)

balu 0.36 2.97 6.49 6.04
bm1 0.35 3.28 6.70 6.14
p1 0.51 2.99 7.96 7.11
t4 0.96 5.59 11.49 9.04
t3 0.59 5.80 14.03 9.84
t2 0.72 6.02 15.57 10.48
t6 0.72 6.53 12.41 9.68

struct 0.63 5.73 10.79 8.98
t5 1.66 9.59 19.17 13.09
19ks 2.25 10.25 25.99 16.93
p2 1.40 11.62 27.13 19.00

s9234 4.71 14.11 34.23 19.75
biomed 5.32 23.64 49.44 26.48
s13207 6.82 21.15 53.40 26.96
s15850 8.06 26.32 71.75 32.97
ind2 10.30 56.32 163.83 68.39
ind3 17.82 91.07 262.70 104.84
s35932 18.02 51.95 174.22 74.58
s38584 21.73 67.85 203.51 81.69

avq small 31.92 110.42 355.28 134.11
s38417 23.05 64.69 198.80 73.65
avq large 33.40 122.72 385.97 154.16
golem3 154.78 468.63 2985.52 914.34
total 346.07 1189.27 5096.46 1828.33

5. Conclusions

In this paper, we proposed an efficient clustering algo-

LETTER
1993

rithm which utilizes the property of the local optimum
space. We experimentally showed that about 20 local
optimum solutions are enough for capturing the prop-
erty of the local optimum solution space. The multi-
level bipartitioner (MBP) based on the proposed clus-
tering algorithm, is able to produce very stable and
satisfying results. Besides the obtained partitioning re-
sults are better than those of the previous algorithms,
the total average cut size of MBP is only about 3%
worse than the total best cut size. This means that for
the netlist partitioning problem, using the property of
the local optimum solution space is a profitable method.

References

[1] C.J. Alpert and A.B. Kahng, “Fast spectral methods for ra-
tio cut partitioning and clustering,” Proc. IEEE Int. Conf.
on Computer-Aided Design, 1991.

[2] C.J. Alpert and A.B. Kahng, “Simple eigenvector-based cir-
cuit clustering can be effective,” Proc. IEEE Int. Symp. on
Circuits and Systems, pp.IV/683–686, Atlanta, May 1996.

[3] B.W. Kernighan and S. Lin, “An efficient heuristic pro-
cedure for partitioning graphs,” Bell Syst. Tech.J, vol.47,
pp.291–307, Feb. 1970.

[4] J.H. Huang, C.J. Alpert, and A.B. Kahng, “Multilevel cir-
cuit partitioning,” ACM/IEEE Design Automation Conf.,
pp.530–533, 1997.

[5] C.M. Fiduccia, et al., “A linear time heuristic for improv-
ing network partitions,” ACM/IEEE Design Automation

Conf., pp.175–181, 1982.
[6] V. Kumar, G. Karypis, R. Aggarwal, and S. Shekhar, “Mul-

tilevel hypergraph partitioning: Application in VLSI do-
main,” ACM/IEEE Design Automation Conf., pp.526–529,
1997.

[7] H. Shin and C. Kim, “A simple yet effective technique for
partitioning,” IEEE Trans. VLSI Systems, vol.1, no.3, Sept.
1993.

[8] J. Cong and M. Smith, “A parallel bottom-up clustering
with applications to circuit partitioning in VLSI design”.
ACM/IEEE Design Automation Conf., pp.755–760, 1993.

[9] L. Hagen J. Cong and A.B. Kahng, “Random walks for cir-
cuit clustering,” IEEE Intl. ASIC Conf., pp.14.2.1–14.2.4,
1991.

[10] H.J. Promel, J. Garbers, and A. Steger, “Finding clusters in
VLSI circuits”. In IEEE Int. Conf. Computer-Aided Design,
pp.520–523, 1990.

[11] L. Hagen and A.B. Hahng, “New spectral methods for ratio
cut partitioning and clustering”. vol.11, no.9 Sept. 1996.

[12] M. Garey and D.S. Johnson, “Computers and intractabil-
ity: A guide to the theory of np-completeness,” Freeman,
1979.

[13] M.K. Goldberg and M. Burstein. “Heuristic improvement
technique for bisection of VLSI networks,” Proc IEEE Intl.
Conf. Computer Design, pp.122–125, 1983.

[14] C. Jones T. Bui, C. Heigham, and T. Leighton, “Improv-
ing the performance of the Kernighan-Lin and simulated
annealing graph bisection algorithms”. ACM/IEEE Design
Automation Conf., pp.775–778, 1989.

